
Extremal trajectories for stochastic equations obtained directly from the Langevin differential

operator. II. First integrals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 L409

(http://iopscience.iop.org/0305-4470/25/8/005)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


3. Phys. A Math. Gen. 25 (1592) J A U - U I Z .  Pinled  in the UK 

LETTER TO THE EDITOR 

Extrema1 trajectories for stochastic equations obtained directly 
from the Langevin differential operator: 11. First integrals 

Emilio Cortis 
Departamento de Fisica, Universidad Aut6noma Metropolitana, PO Box 55-534, 
Izfapalapa, CP 09340, Mexico 

Received 29 November 1991 

Abstract. We have shown that the differential operator for the extrema1 trajectory of a 
stochastic process can be written as a square of operators, i.e. the Langevin systematic 
operator times its adjoint. Here we show that we can go further and wnte also directly 
from the Langevin equation, fint integrals (conservation principles) of the ertrcmal path 
differential equation. We assume linearity in the Langevin operator and Gaussianity far 
the fluctuation 

Following the functional integral approach, which now has been applied to stochastic 
problems by several authors [2-51, when the integrals involved are Gaussian, then the 
conditional probability density can be expressed as an exponential of a functional 
S[x( t ) ]  evaluated along an extremal path. The calculation of this extremal path usually 
requires a variational process that gives us a differential equation for the path. 

We obtained recently a result [I]  that allows us to write the extremal path differential 
operator directly in terms of products associated with the Langevin operator. Here we 
want first to recall that result in a more compact expression and then, going further, 
we obtain first integrals of the extremal path differential equation. 

We start with a general stochastic equation with additive and Gaussian noise 

D(x) = f  ( 0  (1) 

where we define a linear differential operator, which hereafter is referred to as the 
Langevin operator, as 

with a, analytic functions of i. 
f ( 1 )  is a stochastic function with a correlation 

( f ( t l ) f ( h ) ) = ( D / d  exp(- lh-Mr)  (3 )  

where 7 is the correlation time; then we can write together with equation ( I ) ,  the 
equation 

r-=-ftC df 
dr (4) 
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with 6 being delta correlated. Taking the derivative of equation (1) we obtain 
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Now, we define the 'action' as the functional [a ]  

S[~(t)]=[~: 'L( t )dt  

where 

V t ) =  6 ( t ) 2  

because 5 is Gaussian and delta correlated. Then we have 

Applying the stationary condition 6S = O  to equation (6) and after several integra- 
tions by parts one obtains 

N+1 d'" J L  
(-l)k--- dtk a x I k ) - O  

k=O 

which is the Euler-Lagrange differential equation for the extremal path. 
Now, from equations (2), (8) and (9) we obtain 

where D* stands for the adjoint of D 
N d ( k )  

D * =  ( - l ) ' 7 a N - k .  
k - 0  d t  

We can write equation (10) in the form1 

D*M*MD(x) = O  

( 9 )  

for which we define the memory operator M =  l + ~ d / d t  and its adjoint M*= 
1 - 7 dldt.  

First we observe in equation (12) that the whole operator for the extremal is 
self-adjoint; we will come back to this property later. We see in this product an operator 
times its adjoint; this square comes from the Gaussian noise. If the coefficients of D 
are not constant then the operator M and D do not commute and this factorization 
can be useful to solve a complicated differential equation. When the coefficients of D 
are constant then the four operators of equation (iij commute and we can write the 
solution of the extremal path as a linear combination of the solutions of D ( x )  = 0, 
D*(x)=O and the functions exp(t/T) and exp(-t/T). These exponentials are the 
solutions that correspond to the memory operators and they give to the extremal path 
the memory contribution, no matter the precise form of the Langevin operator D. 

We observe in equation (12) that if the correlation time T goes to zero then the 
eqnztion red..ccs to ,n*,n(x) = 0, which is the MnrGnvi2n !hi!. 

t In a previous communication we got this result with the factors in a different order and that expression 
is more complicated due to the commutation relations. 
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Now let us consider the converse problem. We have that, given any self-adjoint 

R = D * D  (13) 

then we will see how the function D(x)  that results can be related to first integrals of 
the differential equation R(x) = 0. 

To illustrate this let us consider a simple dynamical non-stochastic problem, starting 
from an equation of motion whose differential operator has the self-adjoint property. 
Let us take the equation of the harmonic oscillator, 

differential operator R, if it is of even order, it can be factorized in the form 171 

R(x) = x+w2x = 0. (14) 

This operator can be factorized as 

R = (i- iw ) (:+ iw ) . 
We define D=(d/df)+iw and D*=(d/dt)-iw. Then we can define a Lagrangiant 
as L = D(x)'. In this case D has constant coefficients, therefore L does not depend 
explicitly on 1. Then we can identify [SI a first integral of the equation R(x)=O as 

which in terms of D gives 

H = D(x)[D(x) -2iwxI = xz+w2x2 

which means of course the energy conservation. 
Now we go back to the Langevin equation (1); let us consider a general case where 

U IS linear anu we wani LO ruc;nnry MSL iiiicgiars L I I ~ L L  ~ i i u u i u  ~ L I J C .  {U, niiw Y UVCI 

not depend explicitly on time and (b) when D does not depend explicitly on x. 
(a) Suppose D has constant coefficients. Starting from the expression (2) and 

taking the Lagrangian as 

r . I - . . ~ ~ - . . - >  :.l-...:o..e--.: ...---.., " . L " * - L  ^ _ _ I  A "L".., ," ,.., l.̂- " A - - "  

L =  D(x)' (18)  

we can write a general expression for the first integral of the extrema1 differential 
equation [SI 

+. . .+x")-- 

t We note here that the Lagrangian defined as D(x)' ,  in this casc, turns out to be a complex quantity and 
has a term in ui. We know that, given an Euler-Lagrange equation, the corresponding Lagrangian is not 
unique. 
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(here the exponentials in parentheses mean time derivatives) and from equation (le),  
we can have this expression in terms of D :  

H = D2-2xa,D -2~ '"[a ,D'~ ' -  a,D'2'+. . .+(-l)NaND'N-"] 
- 2 x ' Z ' [ a , ~ ( 1 1 - .  , ,+(-i)(N-']a N D(N-21]- .  , , - 2 x ( N - U a  N ~ ( 1 ) .  (20) 

We point out that here D is not an operator, but a function of x, x, x, etc. 
( b )  Now suppose that D can have variable coefficients but does not depend 

explicitly on x (an ignorable variable). From the Euler-Lagrange equation (extremal 
equation), we can integrate once and write this integral in terms of D as 

d dZ d3 d'N-1) 

Da, - - ( Da,) +-I (Do,) -7 (Do4) + . . . + ( - l ) N - l  - d f N - i  ( D ~ N ) = C  ( 2 1 )  dt dt  dt  

or we could write this expression in the form 

( 2 2 )  
dQ 
dt 

Q*D(x) = Q* - (x) = C 

where we define the operator Q associated with D as 
d d(N-ll 

Q = a,+ a,-+. . .+ a N F .  
dr 

We see that the outcoming operator Q* dQ/dt is also self-adjoint, of order 2N-1. 
We have obtained in equations ( 1 2 ) ,  (20) and ( 2 2 )  some results about extremal 

paths and conservation principles that depend on the Langevin operator, and the 
nature of noise. So far, these expressions which involve differential equations and a 
variational principle have to be constrained to linear operators. We are trying to 
consider nonlinear Langevin operators that could include more complicated potentials. 
The difficulties one finds, depending on the particular problem, are not only to deal 
with nonlinear operators, but also that the functional integrals are no longer Gaussian 
and the extremal path may not be the only contribution to the sum over paths. 
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